Recent "
high-qualit

Jr treble Enabling a better sounding world



Aboutus

\ L
i1 \ |

Daniel Gert Nielsen
Senior Product Manager

Georg Gotz
Senior Audio Research
Engineer



Agenda

—l

B w

™~ o

What improves ML models?

Large-scale room-acoustic data acquisition

The many degrees-of-freedom in room-acoustic datasets
Available datasets

Measurements vs. Simulations

Automating measurements

o Recent advances in room-acoustic simulation

Simulation paradigms

Do high-quality room-acoustic datasets improve the
performance of data-driven methods?

Room-acoustic simulations as an alternative to measurements
for audio-algorithm evaluation

Setting up diverse room-acoustic datasets: Example workflow
Advanced source and receiver modeling in simulations
Conclusions

O
O
O
O



What improves ML models?
Current advancements and challenges
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Trends in Al & ML for Audio

Audio will be the main interface to technology in 5 years
o We are seeing the building blocks being formed today
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« Audio will be the main interface to technology in 5 years
o We are seeing the building blocks being formed today
« Generative Al
o Speech to text, Text to music, text to speech, voice cloning

The Al voice geiierator

for video creators

The world's most realistic
voice Al In real-time
The most realistic voice Al platform

Al voice models and products powering millions of developers, creators, and enterprises. From
low-latency conversational agents to the leading Al voice generator for voiceovers and audiobooks.
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Audio will be the main interface to technology in 5 years
o We are seeing the building blocks being formed today

Generative Al

o Speech to text, Text to music, text to speech, voice cloning

Audio understanding and Analysis

o Emotion recognition, who is talking?

Sound source localization, blind room estimation

Audio Separation, Speech Enhancement and de-noising
o The pre-requisite for the above applications

Challenges in Al & ML for Audio

Data scarcity

« Vast amount of diverse data is needed for ML algorithms
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Trends in Al & ML for Audio

« Audio will be the main interface to technology in 5 years

o We are seeing the building blocks being formed today
Generative Al

o Speech to text, Text to music, text to speech, voice cloning
Audio understanding and Analysis

o Emotion recognition, who is talking?
Sound source localization, blind room estimation
Audio Separation, Speech Enhancement and de-noising

o The pre-requisite for the above applications

Challenges in Al & ML for Audio

Data scarcity

« Vast amount of diverse data is needed for ML algorithms
Robustness issues
Metrics are King

o PESQ, MOS, SDR, FAD, WER, STOI.....

o How do we perceive it?

= Time consuming but important

Al on the edge - low latency is a requirement for real time applications



Model improvement dimensions

- The race is on! Rapid development in ML models constantly improves performance

Model
Performmance

Model 4
Model 3

Model 4

Model 3
Model 2

Model 1

Improvements can
. also come from the
input

Data fidelity



Large-scale room-acoustic data acquisition
Challenges and current trends
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Room-acoustic datasets should be diverse

DISENTANGLING THE VARIOUS DEGREES OF FREEDOM

Sound source

Speech signal

Different source-
receiver
configurations

Also:
directivities

@ Receiver

Different room
volumes

S

Different room
shapes

Different
absorption

Different
scattering objects




DISENTANGLING THE VARIOUS DEGREES OF FREEDOM

Room-acoustic datasets should be diverse

What effects do cultural/aesthetic differences have on room acoustics or device placement?
Should we account for them in room-acoustic datasets?

“German living room” “Japanese living room”




Realistic and diverse training datasets improve the ML model
performance

Table 2: Localization results on three real test sets achieved by the SRP-PHAT baseline and by the supervised model [34] trained using
various simulation modes. Mean angular errors (MAE) are displayed with their 95% confidence interval. Bold numbers indicate the
best system in each column and the systems statistically equivalent to it. Statistical significance was assessed using McNemar'’s test for
the Recall metric and 95% confidence intervals over angular error differences for the MAE metric.

Real Test Sets — VoiceHome-2 [30] DIRHA [31] STARS22 [32]
Methods T Recall | | MAE (°) | T Recall | | MAE (°) | T Recall | | MAE (°)
SRP-PHAT 70% 99+1.5 61% 15.0+ 2.3 45% 14.9 + 0.6
Naive Training 78% 7.6 +1.2 7% 84+1.4 57% 12.94+ 0.6
Advanced Training 85% 5.8+0.8 84% 6.3+1.0 61% 11.4+0.5
Ablation study
without wall realism 83% 6.2+0.8 81% 7.5+1.4 59% 12.1+0.6
without source realism 82% 714+1.1 80% 78+1.2 63% 11.44+0.6
without receiver realism N/A N/A 78% 83+1.5 53% 13.4+£0.6

More evidence later in this talk!



What datasets are already publicly available?

Dataset Acquisition Acoustic conditions Scattering Source-receiver configurations Directivity
per room objects

dEchorate
(Di Carlo et al.)

Arni
(Prawda et al.)

Arni — 6DoF Spatial
(McKenzie et al.)

BUT ReverbDB
(Szbke et al.)

BIRD
(Grondin et al.)

Motus
(Gotz et al.)

ACE Challenge
(Eaton et al.)

MIT IR Survey
(Traer and McDermott)

GWA
(Tang et al.)

Loudspeaker array
(Erbes et al.)

ADREAM
(Winter et al.)

MeshRIR
(Koyama et al.)

Measurement

Measurement

Measurement

Measurement

Simulation
(Image-source
model)
Measurement
Measurement
Measurement
Simulation
(Hybrid)

Measurement

Measurement

Measurement

(Shoebox)

1
(Shoebox)

1
(Shoebox)

8
(Various)

12,500
(Shoebox)

1
(Shoebox)

7
(Various)

27

18,900
(Various)

1

... and many more!

5312

830
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6 arrays with 5 mics each
6 sources

5 mics
1 source

7 mics
3 sources

31 mics
5 sources

2 mics
4 sources

1 mic
4 sources

2 mics
1 source

2 mics
1 source

Receiver grid
Source grid

1 mic (80 head rotations)
64 sources

4 mics with 78 head rotations + 20 mics

with single head rotation
4 sources

Mic grid (robot), 4,400 positions
33 sources

Mono mics
Directional loudspeaker

Mono mics
Omni loudspeaker

HOA mic arrays
Directional loudspeaker

Mono mics
Directional loudspeaker

Mono receivers
Omni sources

HOA mic array
Directional loudspeaker

Several mic arrays, also HOA
Directional loudspeaker

Mono mics
Directional loudspeaker

Mono receivers
Omni sources

Mono mic and dummy head
Directional loudspeakers

Dummy head

Mono mics
Directional loudspeaker



Simulations or measurements?

ACCURACY, EFFORT, AND SCALABILITY

Simulations

- Exactly reproducible

« High scalability

- High diversity

 High flexibility

. Prototyping devices/rooms
before building them

Measurements

Capturing an environment "asiit is”

Low scalability
Inherently noisy



Example: A summer of 830 measurements

o Measurement #0001
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whole_angles = treble.ComponentAnglePool( [0, 90, 180, 270])
half_angles = treble.ComponentAnglePool( [0, 45, 90, 135, 180, 225, 270, 315])

placements = [

treble.GeometryComponentPlacement
components=tsdk.geometry_component_library.query(group="table"),
preferred_count=2,
rotation_settings=whole_angles,
min_dist_from_objects=0.25,
min_dist_from_walls=0.25,

treble.GeometryComponentPlacement
components=tsdk.geometry_component_library.query(group:
preferred_count=2,
rotation_settings=half_angles,
min_dist_from_objects=9.25,
min_dist_from_walls=0.25,

treble.GeometryComponentPlacement
components=tsdk.geometry_component_library.query(group:
preferred_count=1,
rotation_settings=whole_angles,
min_dist_from_objects=0.25,
min_dist_from_walls=0.25,

treble.GeometryComponentPlacement
components=treble.GeometryComponentGenerator.create_box
treble.BoundingBox. from_points(-0.5, 0.5, -0.5, 0.5, @, 1)

preferred_count=2,

min_dist_from_objects=0.5,
min_dist_from_walls=0.5,

treble.GeometryComponentPlacement
components=treble.GeometryComponentGenerator.create_box
treble.BoundingBox. from_points(-0.1, 0.1, -0.1, 0.1, @, 0.2)

preferred_count=5,
min_dist_from_objects=9.02,

for room_type in generated_room_defs:
print(f"==== Populating {room_type) s with obje
for room_idx, room in enume (tqdm(generated_room_defs [room_typel))

room. populate_with_geometry_components(
components=placements, selection_algorithm=treble.ComponentSelectionAlgorithm.random




Example: Automating room-acoustic measurements with
robots
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A random walk measurement strategy covers a shoebox
room without leaving out any large areas

4l Source robot all Receiver robot
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Advanced robot systems enable advanced measurement
strategies in complex environments
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Remaining challenges in automated measurements

» Accurate SLAM (simultaneous localization and mapping)
* Robust automated measurement procedures and

automatic detection of artifacts

« Truly(!) flexible robots:

o Size that fits "everywhere”
o Moving furniture or objects?
o What about height?




Simulation paradigms
A comparison of acoustic simulation methods
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The two simulation paradigms

 In traditional room acoustic simulation there are two main methods
o Geometrical Acoustics
= Approximates acoustic waves as rays — works decently at high frequencies

o Wave-based methods
= Solves the wave equation — needs a lot of compute power at high frequencies

« In terms of data generation for audio Geometrical acoustics are by far the most
popular oneg, as it is used in OS such as PRA, gpuRIR, and Habets ISM

Numerical (“wave-based”) Geometrical acoustics
Directly solving the wave equation: inherently High-frequency approximation, lacking
capturing wave phenomenal like diffraction, wave-nature of sound. Computationally

phase and scattering. efficient
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Reflection off a complex surface

Numerical (“wave-based”) Geometrical acoustics
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Complex acoustic conditions




impulse response (right)
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The two simulation paradigms

Wave-based simulations are expensive at high frequencies

Works well for small datasets
- E.g.for evaluation tasks

A hybrid approach is more suitable for large dataset generation

Numerical (“wave-based”)

Directly solving the wave equation: inherently
capturing wave phenomenal like diffraction,
phase and scattering.

Geometrical acoustics

High-frequency approximation, lacking
wave-nature of sound. Computationally
efficient



Massively parallel wave-based modeling




Massively parallel wave-based modeling




Do high-quality room-acoustic datasets improve
the downstream performance of data-driven
methods?

Jr treble Enabling a better sounding world



We train a binaural sound source distance estimation and

localization model

Spectral features
extracted from
binaural speech

Spectral features
CHxTxK

Convolutional 2D, 128 filters
1x4 Max-Pooling

Convolutional 2D, 128 filters
1x4 Max-Pooling

Convolutional 2D, 128 filters
1x4 Max-Pooling

v
Bidirectional GRU, 128 units
A
_ ; !
FC, 128 neurons FC, 128 neurons
FC, 128 neurons ... ...,FC, 128 neurons
FC, C, neurons FC, Cq neurons
1 Txc; | TxCq
Direction-of-arrival Distance

(x,y, 2)

Krause, D. A., Garcia-Barrios, G., Politis, A.,
Mesaros, A. & Krause, D. A. “Binaural Sound
Source Distance Estimation and
Localization for a Moving Listener.”
IEEE/ACM Trans. Audio, Speech Lang.
Process. 32, 996-1011 (2024).



We compare the performance of different training datasets

- ISM:
o Dataset provided by authors
o Image-source model (custom implementation)
o 2500 shoeboxes
o Non-uniform absorption

« Hybrid:

Numerical wave-based simulation (DG-FEM) until 700 Hz
Ray radiosity + image-source model above 700 Hz
Implemented in Treble SDK

2500 shoeboxes

Non-uniform absorption

O O O O O

- PRA:
o Image-source model (50th order)
o Implemented in PyRoomAcoustics
o 2500 shoeboxes
o Non-uniform absorption
o Exactly replicating the room and source-receiver setup from Hybrid



We evaluate the performance of the trained modelsona
measured evaluation dataset

« Combination of three datasets containing measured BRIRs

o Loudspeaker Array
V. Erbes, M. Geier, S. Weinzierl, S. Spors (2015): Database of single-channel and binaural

room impulse responses of a 64-channel loudspeaker array. Proc. of the 138th Int. AES
Convention, Warsaw, Poland.

o ADREAM
F. Winter, H. Wierstorf, A. Podlubne, T. Forgue, J. Manhes, M. Herrb, S. Spors, A. Raake, and P.
Daneés, ‘Database of binaural room impulse responses of an apartment-like environment,’
Proc. of 140th Aud. Eng. Soc. Conv., Paris, 2016

o Medasurements from Treble's furnished lab
Custom dataset recorded in the Treble Lab, including furniture

« Approximately 600 BRIRs in total



Count

various acoustic conditions

160 1

140 1
120 1
100

80

201

The evaluation dataset consists of measurements and covers

Histogram of Azimuth angles

0 T 1 T T
—-180 —135 90 45 0 45 90 135 180

Azimuth angle (degrees)

Count

160
140 1
120 1
100
80 1

20 1

Histogram of Distances

‘i—lH_l_ﬂTLﬂ.D n_m

3 4 5 6 7 8
Distance (m)

Count

160

140
120
100 -

80

201

Histogram of T30

m%m
0.5 1.0 1.5

—

T30 (s)

2.0




The performance of the model improves when training on high-
quality simulations

100

801

40 -

Localization error (degrees)
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Hybrid PRA ISM Hybrid

Dataset

PRA ISM
Dataset

Training dataset

Localization error (°) |

Percentual distance
estimation error (%) |

Median 90th percentile Median 90th percentile
Hybrid 25.37 49.08 27.755 48.940
PRA 39.20 55.58 114.583 164.163
ISM 42.07 68.51 55.309 97.881




Task-specific considerations

« Binaural localization model is just one example we tried out:
improved performance also in other tasks

« Some tasks benefit more from wave-based data than others
« Comprehensive study following soon!

« Let's discuss if you have a specific use case in mind!



Room-acoustic simulations as an alternative to
measurements for audio-algorithm evaluation

G. Gbtz, D. G. Nielsen, S. Gudjénsson, F. Pind, 'Room-acoustic simulations as an
alternative to measurements for audio-algorithm evaluation,” arXiv:2509.05175

Jr treble Enabling a better sounding world



We replicate four measured datasets using different simulation

paradigms

Dataset

Room

Description

Source-receiver configurations

Bricks

Room 1: Lab room, 80 m3
(Tm X 4.5m X 2.5m)

Including piles of 40 cm X 40 cm bricks at multiple
locations and 100 mm thick stonewool absorbers on
the walls.

Average reverberation time: 0.6's

20 RIRs (10 receivers X 2 sources)
Receivers: GRAS 1/2” free-field microphones
Sources: Avantone MixCubes Active

Furniture

Room 1: Lab room, 80 m?
(Tm X 4.5m X 2.5m)

Including typical living room furniture and 100 mm
thick stonewool absorbers on the walls.

Average reverberation time 0.5s

6 RIRs (3 receivers X 2 sources)
Receivers: GRAS 1/2” free-field microphones
Sources: Avantone MixCubes Active

Variable
absorption

Room 1: Lab room, 80 m3
(Tm X 4.5m X 2.5m)

Including different stonewool absorber configurations
on the walls, resulting in three acoustic conditions.
Average reverberation time, condition 1: 0.3s
Average reverberation time, condition 2: 0.6 s
Average reverberation time, condition 3: 0.9s

12 RIRs (2 receivers X 2 sources X 3 conditions)
Receivers: GRAS 1/2” free-field microphones
Sources: Avantone MixCubes Active

Studio

Room 2: Studio, 38 m*
(4.8m x 3.2m X 2.5m)

Empty studio room in a historic old building.
Solid exterior walls, lightweight construction
interior walls, laminate floor.

Average reverberation time: 1.43s

34 RIRs (17 receivers X 2 sources)
Receivers: NTI MA220 Class 1 microphones
Sources: ATC SCM25 A MK2

(a) Lab room with bricks.

(b) Lab room with furniture.

—

(¢) Studio.



We replicate four measured datasets using different simulation

paradigms

Name

Simulation details

DG-FEM

Wave-based: Discontinuous Galerkin finite-element method

e Implemented with the Treble SDK

o Surfaces modelled with complex acoustic impedances
e Directional source modelling: boundary velocity source
e Upper simulation frequency: 7 kHz

GA-RR

Geometrical Acoustics: Ray radiosity

e Implemented with the Treble SDK

e Surfaces modelled with complex acoustic impedances

e Directional source modelling: fitted pattern from boundary
velocity source

GA-RT

Geometrical Acoustics: Ray tracing

e Implemented with PyRoomAcoustics
o Surfaces modelled with energy absorption coefficients
e Directional source modelling: cardioid directivity pattern




We use these evaluation datasets to evaluate the performance

of three audio sighal processing and ML algorithms

- WPE-based dereverberation:

Traditional signal processing
T. Yoshioka and T. Nakatani, “Generalization of multi-channel linear prediction

methods for blind MIMO impulse response shortening,” IEEE Trans. Audio Speech Lang.
Process., vol. 20, no. 10, pp. 2707-2720, 2012.

* Neural network for speaker-distance estimation (SDE):

Pre-trained checkpoint, trained with measured data
M. Neri, A. Politis, D. A. Krause, M. Carli, and T. Virtanen, “Speaker distance estimation in

enclosures from single-channel audio,” IEEE/ACM Trans. Audio Speech Lang. Process.,
vol. 32, pp. 2242-2254,2024.

- Diffusion-based neural network for speech dereverberation:

Pre-trained checkpoint provided by authors
J. Richter, S. Welker, J.-M. Lemercier, B. Lay, and T. Gerkmann, “Speech enhancement
and dereverberation with diffusion-based generative models,” IEEE/ACM Trans. Audio
Speech Lang. Process,, vol. 31, pp. 2351-2364, 2023.



DG-FEM simulations provide the same insights into algorithm
performance as measurements
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(a) WPE-based dereverberation algorithm



DG-FEM simulations provide the same insights into algorithm
performance as measurements

SDE (ML) Dereverberation (ML) Dereverberation (DSP)
Distance est. error PESQ ESTOI SI-SDR PESQ ESTOI SI-SDR
p T RMSE | pT RMSE| pT RMSE| pT RMSE|]l p1T RMSE] pT RMSE | pT RMSE |

DG-FEM  0.76 0.16 0.92 0.22 0.91 0.05 0.75 3.09 0.91 0.21 0.90 0.03 0.73 235
GA-RR 0.59 0.24 0.68 0.51 0.70 0.11 0.61 3.68 0.77 0.35 0.76 0.06 0.57 2.86
GA-RT 0.51 0.25 0.28 0.81 0.45 0.17 0.23 5.71 0.14 0.70 0.56 0.07 0.10 4.19




Setting up diverse room-acoustic datasets

Example workflow

A HO,

@_I ﬁ.I.L__ Code examples
% J www.treble.tegh/
aes-sdk-tutorial
@&‘ﬁ

’ treble

Enabling a better sounding world



Source and receiver modeling
Modeling sources as they are in real-life

Jr treble Enabling a better sounding world



Introduction to sources

- Point sources
o Omni-directional
o Directional Point Sources
- Boundary Velocity sources
o Prescribed to an existing layer
o Injected submodel




Boundary Velocity Sources

A boundary velocity source can be arbitrarily close to objects and surfaces
o Addresses shortcomings of point sources
Precise simulations of both near and far-field
o The effect of the source geometry is captured well
o Enables on-board microphones close to the device
o High frequency directivity patterns are captured well




Receiver Modeling

Mono receivers

Spatial receivers
o Up to 32nd order ambisonics
o Enables vast post-processing capabilities
o Perceptual evaluation



Data augmentation and device-specific IRs

Static data

Initialize Simulation Import device CAD

from TSDK library and simulate DRTF

Spatial RIRs

Device Render

Import a measured
DRTF/HRTF

Rotate or
change device




Demo

24
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Directive sources and receivers in PyRoomAcoustics

import pyroomacoustics as pra

room = pra.ShoeBox(
I):[ ’ ’ ]I
materials=pra.Material (energy absorption),

fs=
max order=40,

ardioid(DirectionVector (azimuth=-
], directivity=dir)

, colatitude=90)

, gain=

)

Only ISM can be used
with directive
sources/receivers; ray
tracer not available

Directivity is baked
into the simulation
— complete re-run
required when new
orientation is desired

No Ambisonics output
available



Conclusions

Jr treble Enabling a better sounding world



Main takeaways from today

« There are two dimensions to downstream performance
« ML model improvements

* Input data

« There are two major components for data sets
- Size
« Quality

- The quality of the data is linked to how well it represents the real world

« Significant improvements to downstream performance can be gained by using higher
quality data

«  Measurements can be replaced by simulations for model evaluation

If interest: @
hands-on Tutorial E 1|___
exercises material and ;E

after the SDK access:
tutorial

www.treble.tech/
aes-sdk-tutorial



 treble

Enabling a better sounding world
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